千锋教育-做有情怀、有良心、有品质的职业教育机构

手机站
千锋教育

千锋学习站 | 随时随地免费学

千锋教育

扫一扫进入千锋手机站

领取全套视频
千锋教育

关注千锋学习站小程序
随时随地免费学习课程

当前位置:首页  >  技术干货  > Spark repartition和coalesce的区别

Spark repartition和coalesce的区别

来源:千锋教育
发布人:syq
时间: 2022-08-12 10:28:21 1660271301

  repartition只是coalesce接口中shuffle为true的实现

  不经过 shuffle,也就是coaleasce shuffle为false,是无法增加RDD的分区数的,比如你源RDD 100个分区,想要变成200个分区,只能使用repartition,也就是coaleasce shuffle为true。

Spark repartition和coalesce的区别

  如果上游为Partition个数为N,下游想要变成M个Partition

  N > M , 比如N=100 M=60, 可以使用coaleasce shuffle为false。但是如果N远大于M,比如N=100, M=1, 分区有一个激烈的变化时,此时如果用coalesce就只有一个task处理数据,资源利用不够,Executor空跑,这时repartition是一个比较好的选择,虽然有shuffle但是和只有1个Task处理任务比起来效率还是较高。 N < M , coaleasce shuffle为false 不能增加分区,只能用repartition

  更多关于“大数据培训”的问题,欢迎咨询千锋教育在线名师。千锋教育多年办学,课程大纲紧跟企业需求,更科学更严谨,每年培养泛IT人才近2万人。不论你是零基础还是想提升,都可以找到适合的班型,千锋教育随时欢迎你来试听。

tags:
声明:本站稿件版权均属千锋教育所有,未经许可不得擅自转载。
10年以上业内强师集结,手把手带你蜕变精英
请您保持通讯畅通,专属学习老师24小时内将与您1V1沟通
免费领取
今日已有369人领取成功
刘同学 138****2860 刚刚成功领取
王同学 131****2015 刚刚成功领取
张同学 133****4652 刚刚成功领取
李同学 135****8607 刚刚成功领取
杨同学 132****5667 刚刚成功领取
岳同学 134****6652 刚刚成功领取
梁同学 157****2950 刚刚成功领取
刘同学 189****1015 刚刚成功领取
张同学 155****4678 刚刚成功领取
邹同学 139****2907 刚刚成功领取
董同学 138****2867 刚刚成功领取
周同学 136****3602 刚刚成功领取
相关推荐HOT