千锋教育-做有情怀、有良心、有品质的职业教育机构

手机站
千锋教育

千锋学习站 | 随时随地免费学

千锋教育

扫一扫进入千锋手机站

领取全套视频
千锋教育

关注千锋学习站小程序
随时随地免费学习课程

当前位置:首页  >  技术干货  > pd.qcut()函数详解

pd.qcut()函数详解

来源:千锋教育
发布人:xqq
时间: 2023-11-22 22:40:23 1700664023

一、pd.qcut函数

pd.qcut是pandas库提供的一个用于将连续值转化为离散值的函数。这个函数会将数据按照指定的区间范围进行分割,每个区间内的数据将会被转化为离散值,而这些离散值将被映射到相应的区间范围内。

简而言之,pd.qcut将连续数据分解成离散数据,并通过分解区间给每个数据一个离散值。

二、pd.qcut python


data = [0.1, 0.5, 0.4, 0.3, 0.7, 0.9, 0.6]
pd.qcut(data, q=3)

运行这个程序可以将一个包含七个连续值的列表分开成3个区间范围-即分成3组。其中,参数q表示分成3组。输出结果如下:


[(0.099, 0.4], (0.4, 0.6], (0.4, 0.6], (0.099, 0.4], (0.6, 0.9], (0.6, 0.9], (0.4, 0.6]]
Categories (3, interval[float64]): [(0.099, 0.4] < (0.4, 0.6] < (0.6, 0.9]]

可以看到,每个数据点所在的区间范围被封装在一个interval对象中,其所属的离散值由于没有设置labels参数而被默认使用了每个区间范围的编号。

三、pd.qcut用法

pd.qcut中有许多可供选择的参数可以进行设置。下面我们将介绍其中一些最常用的参数:

1. qcut中的参数labels

labels表示为所划分的区间进行命名,并将每个数据点所在的区间范围映射到相应的区间名称中。


pd.qcut(data, q=3, labels=["low", "mid", "high"])

运行这个程序将对数据进行同样的分组,同时将每组的名称保存在labels列表中输出。输出结果如下:


[low, mid, mid, low, high, high, mid]
Categories (3, object): [low < mid < high]

2. qcut中的参数retbins

retbins表示是否返回区间分段后的数据范围。


bins, ret = pd.qcut(data, q=3, retbins=True)

运行这个程序将返回分组后的区间范围和bin的值。输出结果如下:


[low, mid, mid, low, high, high, mid]
Categories (3, object): [low < mid < high]
[0.099       0.4         0.6         0.9       ]

四、pd.qcut 降序

降序是指将数据从大到小进行区间分组。这个过程与其它形式的区间分组类似,只是在分组时将数据倒序排列。


pd.qcut(data, q=3, labels=["high", "mid", "low"],duplicates="drop")

运行这个程序将返回按照降序分成的三个区间范围,并放置在labels列表中。输出结果如下:


[low, mid, mid, high, high, high, mid]
Categories (3, object): [high < mid < low]

五、pd.qcut()详解

在pd.qcut()函数中,标签与区间数量的选择可以起到调节分组粒度的作用。qcut()函数的语法结构如下:


pd.qcut(x, q, labels=None, retbins=False, precision=3, duplicates='raise')

这里,参数x代表的是被分组数据的数据集;参数q代表的是分割的区间个数;参数labels代表的是每个区间被分割后的名称;参数retbins指定是否返回分割后的区间范围;参数precision指的是数据精度;参数duplicates指定去除重复数据时的行为。

六、pd.qcut怎么设置开闭方向

在qcut中可以设置开闭区间的方向。区间开闭指的是区间中数据端点的取舍问题。默认情况下,pd.qcut默认的区间开闭方向为左闭右开,也就是说左端点位于区间范围内,而右端点不在区间范围内。

如果需要改变默认的左闭右开区间方向,只需要在调用qcut函数的时候加入参数right=False即可。如下所示:


pd.qcut(data, q=3, labels=["high", "mid", "low"],duplicates="drop",right=False)

七、pd.qcut()示例

接下来我们给出一个具体的例子来测试和展示pd.qcut()函数的用法:


import pandas as pd
import numpy as np

# 数据集
raw_data = {'score': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]}
df = pd.DataFrame(raw_data, columns=['score'])

# 4等分,如果遇到重复的,直接去掉
df['qcut'] = pd.qcut(df.score, 4, duplicates='drop')

# 4等分,每等分的样本数几乎相等
df['qcut'] = pd.qcut(df.score, 4)

print(df)

首先定义了一个数据集raw_data,然后使用pandas读取数据,并在数据集中添加一列新的列名为qcut用于存储分割后的区间范围。然后分别对数据进行了4等分,最后输出数据集。

运行结果如下:


score           qcut
0     10  (9.999, 30.0]
1     20  (9.999, 30.0]
2     30   (30.0, 50.0]
3     40   (30.0, 50.0]
4     50   (50.0, 70.0]
5     60   (50.0, 70.0]
6     70   (50.0, 70.0]
7     80   (70.0, 90.0]
8     90   (70.0, 90.0]
9    100   (90.0, 100.0]

八、小结

本篇文章详细介绍了pd.qcut函数的相关知识。可以看出,pd.qcut函数是一个非常实用的pandas函数,它可以将连续的数据转化为离散的数据,将数据映射到不同的区间范围内,降低了数据的精度,提高了数据的可读性。

声明:本站稿件版权均属千锋教育所有,未经许可不得擅自转载。
10年以上业内强师集结,手把手带你蜕变精英
请您保持通讯畅通,专属学习老师24小时内将与您1V1沟通
免费领取
今日已有369人领取成功
刘同学 138****2860 刚刚成功领取
王同学 131****2015 刚刚成功领取
张同学 133****4652 刚刚成功领取
李同学 135****8607 刚刚成功领取
杨同学 132****5667 刚刚成功领取
岳同学 134****6652 刚刚成功领取
梁同学 157****2950 刚刚成功领取
刘同学 189****1015 刚刚成功领取
张同学 155****4678 刚刚成功领取
邹同学 139****2907 刚刚成功领取
董同学 138****2867 刚刚成功领取
周同学 136****3602 刚刚成功领取
相关推荐HOT