千锋教育-做有情怀、有良心、有品质的职业教育机构

手机站
千锋教育

千锋学习站 | 随时随地免费学

千锋教育

扫一扫进入千锋手机站

领取全套视频
千锋教育

关注千锋学习站小程序
随时随地免费学习课程

当前位置:首页  >  技术干货  > pythonK-NN算法的优缺点

pythonK-NN算法的优缺点

来源:千锋教育
发布人:xqq
时间: 2023-11-13 18:29:40 1699871380

pythonK-NN算法的优缺点

本文教程操作环境:windows7系统、Python3.9.1,DELLG3电脑。

1、优点

(1)简单而有效

(2)再培训成本低。

(3)适合跨领域的抽样。

基于KNN的方法主要依赖于附近有限个样本,而基于类域的KNN方法则不能确定其所属的类类,所以KNN方法更适合于类域有较多交叉或重叠的待分样本集。

(4)适用于各种样本量的分类。

所提出的方法适用于类域中具有较大样本容量的类动态分类,而类域中具有较大样本容量的类动态分类更易产生错误。

2、缺点

(1)是惰性学习。

KNN算法是一种懒散的学习方法(lazylearning,基本不学习),⼀次主动学习算法速度要快得多。

(2)类评分未规格化。

不同之处在于通过概率评分进行分类。

(3)输出的可解释性较差。

比如,决策树的输出可以很好地解释。

(4)不善于处理不均衡的样品。

在样本不平衡时,例如⼀个类的样本容量很小,而其它类的样本容量很小,就有可能导致当一个新样本出现在同一K个邻域中时,在该类的K个邻域中占多数。这个算法只计算“最近的”邻域样本,其中一类样本的个数很小,那么这类样本可能与另一类样本的个数不近,或者这类样本与另一类样本的个数不近。然而,量的大小并不会影响到操作结果。对此,可采用一种改进的同位素同位素同位素同位素法(即同位素离位素同位素同位素同位素)。

以上就是pythonK-NN算法优缺点的介绍,希望能对大家有所帮助。更多Python学习教程请关注IT培训机构:千锋教育。

tags: python培训
声明:本站稿件版权均属千锋教育所有,未经许可不得擅自转载。
10年以上业内强师集结,手把手带你蜕变精英
请您保持通讯畅通,专属学习老师24小时内将与您1V1沟通
免费领取
今日已有369人领取成功
刘同学 138****2860 刚刚成功领取
王同学 131****2015 刚刚成功领取
张同学 133****4652 刚刚成功领取
李同学 135****8607 刚刚成功领取
杨同学 132****5667 刚刚成功领取
岳同学 134****6652 刚刚成功领取
梁同学 157****2950 刚刚成功领取
刘同学 189****1015 刚刚成功领取
张同学 155****4678 刚刚成功领取
邹同学 139****2907 刚刚成功领取
董同学 138****2867 刚刚成功领取
周同学 136****3602 刚刚成功领取
相关推荐HOT