众所周知,机器学习中处理缺失值的方法有很多,然而,由题目“随机森林如何处理缺失值”可知,问题关键在于随机森林如何处理,所以先简要介绍下随机森林吧。
随机森林是由很多个决策树组成的,首先要建立Bootstrap数据集,即从原始的数据中有放回地随机选取一些,作为新的数据集,新数据集中会存在重复的数据,然后对每个数据集构造一个决策树,但是不是直接用所有的特征来建造决策树,而是对于每一步,都从中随机的选择一些特征,来构造决策树,这样我们就构建了多个决策树,组成随机森林,把数据输入各个决策树中,看一看每个决策树的判断结果,统计一下所有决策树的预测结果,Bagging整合结果,得到最终输出。
那么,随机森林中如何处理缺失值呢?根据随机森林创建和训练的特点,随机森林对缺失值的处理还是比较特殊的。