当缓存库出现时,必须要考虑如下问题:
缓存穿透
问题来源: 缓存穿透是指缓存和数据库中都没有的数据,而用户不断发起请求。由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义。
解决方案
接口层增加校验,如用户鉴权校验,id做基础校验,id<=0的直接拦截;
从缓存取不到的数据,在数据库中也没有取到,这时也可以将key-value对写为key-null,缓存有效时间可以设置短点,如30秒(设置太长会导致正常情况也没法使用)。这样可以防止攻击用户反复用同一个id暴力攻击
布隆过滤器。bloomfilter就类似于一个hash set,用于快速判某个元素是否存在于集合中,其典型的应用场景就是快速判断一个key是否存在于某容器,不存在就直接返回。布隆过滤器的关键就在于hash算法和容器大小
缓存穿击
问题来源: 缓存击穿是指缓存中没有但数据库中有的数据(一般是缓存时间到期),这时由于并发用户特别多,同时读缓存没读到数据,又同时去数据库去取数据,引起数据库压力瞬间增大,造成过大压力。
解决方案
设置热点数据永远不过期。
接口限流与熔断,降级。重要的接口一定要做好限流策略,防止用户恶意刷接口,同时要降级准备,当接口中的某些 服务 不可用时候,进行熔断,失败快速返回机制。
加互斥锁
缓存雪崩
问题来源: 缓存雪崩是指缓存中数据大批量到过期时间,而查询数据量巨大,引起数据库压力过大甚至down机。和缓存击穿不同的是,缓存击穿指并发查同一条数据,缓存雪崩是不同数据都过期了,很多数据都查不到从而查数据库。
解决方案
缓存数据的过期时间设置随机,防止同一时间大量数据过期现象发生。
如果缓存数据库是分布式部署,将热点数据均匀分布在不同的缓存数据库中。
设置热点数据永远不过期。
缓存污染(或者满了)
缓存污染问题说的是缓存中一些只会被访问一次或者几次的的数据,被访问完后,再也不会被访问到,但这部分数据依然留存在缓存中,消耗缓存空间。
缓存污染会随着数据的持续增加而逐渐显露,随着服务的不断运行,缓存中会存在大量的永远不会再次被访问的数据。缓存空间是有限的,如果缓存空间满了,再往缓存里写数据时就会有额外开销,影响Redis性能。这部分额外开销主要是指写的时候判断淘汰策略,根据淘汰策略去选择要淘汰的数据,然后进行删除操作。