1. 监控GC的状态,使用各种JVM工具,查看当前日志,分析当前JVM参数设置,并且分析当前堆内存快照和gc日志,根据实际的各区域内存划分和GC执行时间,觉得是否进行优化。
举一个例子:系统崩溃前的一些现象:
- 每次垃圾回收的时间越来越长,由之前的10ms延长到50ms左右,FullGC的时间也有之前的0.5s延长到4、5s
- FullGC的次数越来越多,最频繁时隔不到1分钟就进行一次FullGC
- 年老代的内存越来越大并且每次FullGC后年老代没有内存被释放 之后系统会无法响应新的请求,逐渐到达OutOfMemoryError的临界值,这个时候就需要分析JVM内存快照dump。
2. 生成堆的dump文件 通过JMX的MBean生成当前的Heap信息,大小为一个3G(整个堆的大小)的hprof文件,如果没有启动JMX可以通过Java的jmap命令来生成该文件。
3. 分析dump文件打开这个3G的堆信息文件,显然一般的Window系统没有这么大的内存,必须借助高配置的Linux,几种工具打开该文件:
- Visual VM - IBM HeapAnalyzer
- JDK 自带的Hprof工具
- Mat(Eclipse专门的静态内存分析工具)推荐使用
备注:文件太大,建议使用Eclipse专门的静态内存分析工具Mat打开分析。
4. 分析结果,判断是否需要优化 如果各项参数设置合理,系统没有超时日志出现,GC频率不高,GC耗时不高,那么没有必要进行GC优化,如果GC时间超过1-3秒,或者频繁GC,则必须优化。
注:如果满足下面的指标,则一般不需要进行GC:
- Minor GC执行时间不到50ms;
- Minor GC执行不频繁,约10秒一次;
- Full GC执行时间不到1s;
- Full GC执行频率不算频繁,不低于10分钟1次;
5. 调整GC类型和内存分配 如果内存分配过大或过小,或者采用的GC收集器比较慢,则应该优先调整这些参数,并且先找1台或几台机器进行beta,然后比较优化过的机器和没有优化的机器的性能对比,并有针对性的做出最后选择。
6. 不断的分析和调整 通过不断的试验和试错,分析并找到最合适的参数,如果找到了最合适的参数,则将这些参数应用到所有服务器。